

Supplementary Figure S3. Characterization and radioligand binding studies in α_{2A} -adrenergic receptor knockout INS-1E cells. (a) qPCR analysis comparing α_{2A} -adrenergic receptor expression in rat β -cell-derived parental INS-1E cells and the α_{2A} -adrenergic receptor knockout (KO) INS-1E cells. qPCR shows total loss of α_{2A} -adrenergic receptor expression in the KO cells (P=0.0003). Results were normalized to $\% \alpha_{2A}$ -adrenergic receptor expression in the unmodified parental INS-1E cells. (b) Representative radioligand saturation binding curve with α_{2A} -adrenergic receptor antagonist [3H]RX821002 using membranes prepared from HEK-293 cells transiently overexpressing human α_{2A} -adrenergic receptor (B_{max}=5691±103 fmol·mg⁻¹ protein; K_D=0.67±0.05 nM). (c) Representative competition curves of [3 H]RX821002 versus increasing concentrations of α_{2A} -adrenergic receptor blocker yohimbine (in purple; $K_i=38.2\pm1.1$ nM) or DA (in green; $K_i=22.1\pm0.001$ M). (d) Representative radioligand saturation binding curves comparing [3H]RX821002 binding to endogenously expressed α_{2A} -adrenergic receptor in membranes from α_{2A} -adrenergic receptor KO INS-1E cells (in red) and the unmodified parental INS-1E cell line from which the KO cells were derived (in black; $B_{max}=110\pm0.02$ fmol·mg⁻¹ protein; $K_D=0.098\pm0.02$ nM). Data are represented as means ± SEM and performed in triplicate from n≥3 independent experiments; two-tailed Student's ttest (a).